Abstract

Canonical Correlation Analysis (CCA) is a well-known technique for finding the correlations between two sets of multi-dimensional variables. It projects both sets of variables into a lower-dimensional space in which they are maximally correlated. CCA is commonly applied for supervised dimensionality reduction, in which one of the multi-dimensional variables is derived from the class label. It has been shown that CCA can be formulated as a least squares problem in the binaryclass case. However, their relationship in the more general setting remains unclear. In this paper, we show that, under a mild condition which tends to hold for high-dimensional data, CCA in multi-label classifications can be formulated as a least squares problem. Based on this equivalence relationship, we propose several CCA extensions including sparse CCA using 1-norm regularization. Experiments on multi-label data sets confirm the established equivalence relationship. Results also demonstrate the effectiveness of the proposed CCA extensions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.