Abstract
Canonical correlation analysis (CCA) is a well-known technique used to characterize the relationship between two sets of multidimensional variables by finding linear combinations of variables with maximal correlation. Sparse CCA or regularized CCA are two widely used variants of CCA because of the improved interpretability of the former and the better performance of the later. So far the cross-matrix product of the two sets of multidimensional variables has been widely used for the derivation of these variants. In this paper a new algorithm for sparse CCA is proposed. This algorithm differs from the existing ones in their derivation which is based on penalized rank one matrix approximation and the orthogonal projectors onto the space spanned by the two sets of multidimensional variables instead of the simple cross-matrix product. The performance and effectiveness of the proposed algorithm are tested on simulated experiments. On these results it can be observed that they outperform the state of the art sparse CCA algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.