Abstract

Periprosthetic infection and prosthetic loosing stand out as prevalent yet formidable complications following orthopedic implant surgeries. Synchronously addressing the two complications is long-time challenging. Herein, a bioactive glass scaffold (BGS) functionalized with MgCuFe-layered double hydroxide (LDH)-derived sulfide nanosheets (BGS/MCFS) is developed for vascularized osteogenesis and periprosthetic infection prevention/treatment. Apart from the antibacterial cations inhibiting bacterial energy and material metabolism, the exceptional near-infrared-II (NIR-II) photothermal performance empowers BGS/MCFS to eliminate periprosthetic infections, outperforming previously reported functionalized BGS. The rough surface topography and the presence of multi-bioactive metal ions bestow BGS/MCFS with exceptional osteogenic and angiogenic properties, with 8.5-fold and 2.3-fold enhancement in bone mass and neovascularization compared with BGS. Transcriptome sequencing highlights the involvement of the TGF-β signaling pathway in these processes, while single-cell sequencing reveals a significant increase in osteoblasts and endothelial cells around BGS/MCFS compared to BGS.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.