Abstract

Here we report the fabrication of a carbon-nanotube (CNT) based lithium ion electrode architecture, consisting of alternating layers of multi-walled carbon nanotubes (MWNT) and lithium ion active material, to significantly increase the aerial power and energy density of lithium ion battery cathodes. The CNT-based architecture aims to address engineering limitations of nanoscale active materials such as poor packing density, electrolyte reactivity, and costly fabrication. The alternating layers create a highly porous and highly conductive scaffolding to enhance ionic and electronic transport pathways within the electrode. The results show that the presented CNT-based architecture yielded excellent rate capability and highly stable cycling of lithium manganese oxide (LiMn2O4) active materials and lithium (Li) rich layered (xLi2MnO3·(1-x)LiMO2) materials. For LiMn2O4 materials, the CNT-based architecture demonstrates 14–20x higher aerial capacity over standard fabrication electrodes at discharge rates of 10C. For Li-rich layered materials, the CNT-based architecture demonstrates 70% higher aerial capacity over standard fabrication electrodes at discharge rates of C/2. Highly stable cycling for 100 cycles at 15C for LiMn2O4 and 500 cycles at 1C for Li-rich layered materials is also observed using the CNT-based architecture. The effect of the number of layers, layer thickness, and composition of the active material is investigated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.