Abstract

Nucleic acid-based detection methods are accurate and rapid, which are widely-used in food-borne pathogen detection. However, traditional nucleic acid-based detection methods usually rely on special instruments, weakening their practicality for on-site tests in resource-limited locations. In this work, we developed a convenient and affordable method for food-borne pathogen detection based on a lateral flow strip combined with Cas9 nickase-triggered isothermal DNA amplification, which allows instrument-free and dual target detection. The genomic DNAs of two most common foodborne pathogens, Salmonella typhimurium and Escherichia coli, were simultaneously amplified in a one-pot reaction using specific sgRNAs and primers. The amplicons of genomic DNAs were double-labelled by digoxin/biotin and FITC/biotin tags, respectively, and directly visualized on a simple lateral flow strip. Our method exhibited a high specificity and sensitivity with a detection limit of 100 copies for genomic DNAs and 100 CFU/mL for bacteria. We believe that this method has potential to provide a convenient and low-cost point-of-care test for pathogen detection in the food quality surveillance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.