Abstract

We considered the excitation spectra for the excited states of a three-level atom, where the strong and the weak atomic transitions are driven by resonant and nonresonant laser fields, respectively. The spectral functions describing the excitation spectra for the electric dipole allowed excited state and for the metastable state of the atom have been derived when both laser fields are quantized as well as when they are treated as classical entities. In the low-intensity limit of the laser field operating in the strong transition, there are two short-lifetime excitations, the spontaneous one and the induced one, which appear at the same frequency, and a long-lifetime excitation induced by the weak laser field. These excitations compete with each other at resonance as well as at finite detunings of the weak laser field. In the high-intensity limit of the laser field operating in the strong transition, the competition is between the short- and the long-lifetime side bands, which are induced by the strong and the weak laser fields, respectively. The ratio of the maximum intensities of the peaks describing the long- and the short-lifetime excitations exhibits a resonance variation with the detuning of the weak laser field. Comparison between the results obtained when the laser fields are treated as quantized and as classical entities is made.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call