Abstract

Numerical calculations are presented for the interference spectra of a laser-excited three-level atom, where the strong and the weak atomic transitions are driven by resonant and nonresonant laser fields, respectively. The spectral functions describing the interference spectra for the electric dipole allowed excited state have been considered in the low- and high-intensity limit of the laser field operating in the strong transition. The interference spectra arise from the competition between short-lifetime spontaneous processes and short- and long-lifetime excitations induced by the strong and the weak laser fields, respectively. Both laser fields have been treated as quantized and as classical entities. The computed spectra have been presented graphically for different values of the Rabi frequencies and detunings of the weak laser field. It is shown that the decrease in the intensity of the short-lifetime excitation may provide a measure of the spectral width of the long-lifetime excitation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call