Abstract

Global optimization challenges are frequent in scientific and engineering areas where loads of evolutionary computation methods i.e., differential evolution (DE) and particle-swarm optimization (PSO) are employed to handle these problems. However, the performance of these algorithms declines due to expansion in the problem dimension. The evolutionary algorithms are obstructed to congregate with the Pareto front rapidly while using the large-scale optimization algorithm. This work intends a large-scale multi-objective evolutionary optimization scheme aided by the determinantal point process (LSMOEA-DPPs) to handle this problem. The proposed DPP model introduces a mechanism consisting of a kernel matrix and a probability model to achieve convergence and population variety in high dimensional relationship balance to keep the population diverse. We have also employed elitist non-dominated sorting for environmental selection. Moreover, the projected algorithm also demonstrates and distinguishes four cutting-edge algorithms, each with two and three objectives, respectively, and up to 2500 decision variables. The experimental results show that LSMOEA-DPPs outperform four cutting-edge multi-objective evolutionary algorithms by a large margin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.