Abstract

Many real-world multi-objective optimization problems have hundreds or even thousands of decision variables, which contrast with the current practice of multi-objective metaheuristics whose performance is typically assessed using benchmark problems with a relatively low number of decision variables (normally, no more than 30). In this paper, we propose a cooperative coevolution framework that is capable of optimizing large scale (in decision variable space) multi-objective optimization problems. We adopt a benchmark that is scalable in the number of decision variables (the ZDT test suite) and compare our proposed algorithm with respect to two state-of-the-art multi-objective evolutionary algorithms (GDE3 and NSGA-II) when using a large number of decision variables (from 200 up to 5000). The results clearly indicate that our proposed approach is effective as well as efficient for solving large scale multi-objective optimization problems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.