Abstract

We study the well-posedness of a stochastic differential equation on the two dimensional torus T2, driven by an infinite dimensional Wiener process with drift in the Sobolev space L2(0,T;H1(T2)). The solution corresponds to a stochastic Lagrangian flow in the sense of DiPerna Lions. By taking into account that the motion of a viscous incompressible fluid on the torus can be described through a suitable stochastic differential equation of the previous type, we study the inviscid limit. By establishing a large deviations principle, we show that, as the viscosity goes to zero, the Lagrangian stochastic Navier–Stokes flow approaches the Euler deterministic Lagrangian flow with an exponential rate function.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call