Abstract

A large part of the development effort of compute-intensive applications is devoted to optimization, i.e., achieving the computation within a finite budget of time, space or energy. Given the complexity of modern architectures, writing simulation applications is often a two-step workflow. Firstly, developers design a sequential program for algorithmic tuning and debugging purposes. Secondly, experts optimize and exploit possible approximations of the original program to scale to the actual problem size. This second step is a tedious, time-consuming and error-prone task. In this paper we investigate language extensions and compiler tools to achieve that task semi-automatically in the context of approximate computing. We identified the semantic and syntactic information necessary for a compiler to automatically handle approximation and adaptive techniques for a particular class of programs. We propose a set of language extensions generic enough to provide the compiler with the useful semantic information when approximation is beneficial. We implemented the compiler infrastructure to exploit these extensions and to automatically generate the adaptively approximated version of a program. We provide an experimental study of the impact and expressiveness of our language extension set on various applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.