Abstract

Experimental data from a turbulent jet flow is analysed in terms of an additive, continuous stochastic process where the usual time variable is replaced by the scale. We show that the energy transfer through scales is well described by a linear Langevin equation, and discuss the statistical properties of the corresponding random force in detail. We find that the autocorrelation function of the random force decays rapidly: the process is therefore Markov for scales larger than Kolmogorov's dissipation scale η. The corresponding autocorrelation scale is identified as the elementary step of the energy cascade. However, the probability distribution function of the random force is both non-Gaussian and weakly scale-dependent.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.