Abstract
ABSTRACTBig data have shifted spatial optimization from a purely computational-intensive problem to a data-intensive challenge. This is especially the case for spatiotemporal (ST) land use/land cover change (LUCC) research. In addition to greater variety, for example, from sensing platforms, big data offer datasets at higher spatial and temporal resolutions; these new offerings require new methods to optimize data handling and analysis. We propose a LUCC-based geospatial cyberinfrastructure (GCI) that optimizes big data handling and analysis, in this case with raster data. The GCI provides three levels of optimization. First, we employ spatial optimization with graph-based image segmentation. Second, we propose ST Atom Model to temporally optimize the image segments for LUCC. At last, the first two domain ST optimizations are supported by the computational optimization for big data analysis. The evaluation is conducted using DMTI (DMTI Spatial Inc.) Satellite StreetView imagery datasets acquired for the Greater Montreal area, Canada in 2006, 2009, and 2012 (534 GB, 60 cm spatial resolution, RGB image). Our LUCC-based GCI builds an optimization bridge among LUCC, ST modelling, and big data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Geographical Information Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.