Abstract

Unmanned aerial vehicle (UAV) thermal infrared (TIR) remote sensing is an important way to obtain land surface temperature (LST) with high spatial and temporal resolutions. Due to wide spectral response function (SRF) ranges of UAV thermal imagers, currently available LST retrieval methods suitable for satellite sensors may induce significant uncertainty when applied to UAV sensors. Despite that some methods have been proposed to retrieve LST from UAV remote sensing, studies considering the adverse effect caused by the SRF ranges are still rare. Here, we present a so-called Temperature Retrieval for UAV Broadband thermal imager data (TRUB) method to retrieve LST from UAV broadband thermal imager data. TRUB’s core includes two parts: 1) a simple lookup table (LUT) algorithm for reducing the uncertainty induced by the wide SRF ranges; and 2) models suitable for UAV remote sensing for estimating the atmospheric parameters. Validation from the Heihe River Basin shows that the LST retrieved by TRUB, of which the root mean square error (RMSE) and mean bias error (MBE) is 1.71 and −0.02 K, respectively, is highly consistent with the <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">in situ</i> LST. TRUB is helpful to reduce the uncertainty caused by the wide SRF ranges of UAV thermal imagers and quantify the influence of atmosphere, thus can obtain UAV remote-sensing LST with better accuracy in large-area operating missions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.