Abstract

Rapid urbanization has led to several severe environmental problems, including so-called heat island effects, which can be mitigated by creating more urban green spaces. However, the temperature of various surfaces differs and precise measurement and analyses are required to determine the “coolest” of these. Therefore, we evaluated the accuracy of surface temperature data based on thermal infrared (TIR) cameras mounted on unmanned aerial vehicles (UAVs), which have recently been utilized for the spatial analysis of surface temperatures. Accordingly, we investigated land surface temperatures (LSTs) in green spaces, specifically those of different land cover types in an urban park in Korea. We compared and analyzed LST data generated by a thermal infrared (TIR) camera mounted on an unmanned aerial vehicle (UAV) and LST data from the Landsat 8 satellite for seven specific periods. For comparison and evaluation, we measured in situ LSTs using contact thermometers. The UAV TIR LST showed higher accuracy (R2 0.912, root mean square error (RMSE) 3.502 °C) than Landsat TIR LST accuracy (R2 value lower than 0.3 and RMSE of 7.246 °C) in all periods. The Landsat TIR LST did not show distinct LST characteristics by period and land cover type; however, grassland, the largest land cover type in the study area, showed the highest accuracy. With regard to the accuracy of the UAV TIR LST by season, the accuracy was higher in summer and spring (R2 0.868–0.915, RMSE 2.523–3.499 °C) than in autumn and winter (R2 0.766–0.79, RMSE 3.834–5.398 °C). Some land cover types (concrete bike path, wooden deck) were overestimated, showing relatively high total RMSEs of 4.439 °C and 3.897 °C, respectively, whereas grassland, which has lower LST, was underestimated—showing a total RMSE of 3.316 °C. Our results showed that the UAV TIR LST could be measured with sufficient reliability for each season and land cover type in an urban park with complex land cover types. Accordingly, our results could contribute to decision-making for urban spaces and environmental planning in consideration of the thermal environment.

Highlights

  • land surface temperatures (LSTs) data were measured for grassland, the largest land cover type in the study area, as well as for the square, sports facilities, wooden deck, and bike path that are distributed only partially

  • The LST measurements differed according to the period and land cover type

  • We evaluated the accuracy of the unmanned aerial vehicles (UAVs) thermal infrared (TIR) LST and Landsat 8 TIR LST by measuring in situ LST for each land cover type

Read more

Summary

Introduction

The proportion of urban areas worldwide has been increasing over the last several decades. Continuous urbanization has led to the proportion of the population living in cities exceeding 55.7% of the global population in 2019 (databank.worldbank.org) and it is expected to reach 60% by 2050 [1,2]. Urbanization causes numerous environmental problems, such as water pollution and the weakening of ecosystem services [3,4]. As natural landscapes such as vegetation, water bodies, and agricultural lands are transformed into impermeable surfaces and urban infrastructure, the absorption of solar radiation and surface heat accumulation increase, causing significant changes in the Remote Sens.

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call