Abstract

The dispersion of heavy particles and pollutants is often simulated with Lagrangian stochastic (LS) models. Although these models have been employed successfully over land, the free surface at the air-sea interface complicates the implementation of traditional LS models. We present an adaptation of traditional LS models to the atmospheric marine boundary layer (MBL), where the bottom boundary is represented by a realistic wavy surface that moves and deforms. In addition, the correlation function for the turbulent flow following a particle is extended to the anisotropic, unsteady case. Our new model reproduces behaviour for Lagrangian turbulence in a stratified air flow that departs only slightly from the expected behaviour in isotropic turbulence. When solving for the trajectory of a heavy particle in the air flow, the modelled turbulent forcing on the particle also behaves remarkably well. For example, the spectrum of the turbulence at the particle location follows that of a massless particle for time scales approximately larger than the Stokes’ particle response time. We anticipate that this model will prove especially useful in the context of sea-spray dispersion and its associated momentum, sensible and latent heat, and gas fluxes between spray droplets and the atmosphere.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call