Abstract
We discuss a Lagrangian approach for the simulation of 3D compressible flows on non-structured tetrahedral meshes. The formulation is nodal-based, in the sense that kinematic and thermodynamic variables are all interpolated with continuous P1 polynomials. The equations are solved with an explicit time-marching scheme without stabilizing terms and with the inclusion only of a shock-capturing viscosity. Several examples featuring shock propagations and mixing of fluids are addressed, with particular emphasis on the stability of the approach and on possible strategies for mesh update.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Computer Methods in Applied Mechanics and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.