Abstract

A Lagrangian two-particle model for the relative diffusion and mixing of two reactive species is proposed. The model has been tested for consistency in simple geometrical configurations and has been compared to experimental data, Eulerian first- and second-order closure models as well as to other Lagrangian models. The model includes the covariance between the two species and therefore gives better predictions of both diffusion and chemistry than first-order closure models or the one-particle model proposed by Chock and Winkler (1994a,b, Journal of Geophysical Research, 99 D1, 1019–1031, 99 D1, 1033–1041). The model is a generalisation of the model presented by Komori et al. (1991, Journal of Fluid Mechanics 228, 629–659). The results of the calculations, although preliminary in character, indicate that the proposed algorithm is robust and efficient, and yields satisfactory results in turbulence with slow to moderate chemistry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.