Abstract
Wildfires pose a significant threat to the entire ecosystem. The impacts of these wildfires can potentially disrupt biodiversity and ecological stability on a large scale. Wildfires may alter the physical and chemical properties of burned soil, such as particle size, loss of organic matter and infiltration capacity. These alterations can lead to increased vulnerability to geohazards such as landslides, mudflows and debris flows, where soil erosion and sediment transport play a crucial role. The present study investigates the impact of wildfire on soil erosion by conducting a series of laboratory experiments. The soil samples were burned using two different methods: using firewood for different burning durations and using a muffle furnace at an accurately controlled temperature within 400∘C∼1000∘C. The burned soils were subsequently subjected to surface erosion by utilizing the constant head method to create a steady water flow to induce the erosion. In addition, empirically based theoretical models are explored to further assess the experimental results. The experimental results reveal a loss of organic matter in the burned soils that ranged from approximately 2% to 10% as the burning temperature rose from 400∘C to 1000∘C. The pattern of the grain size distribution shifted to a finer texture in the burned soil. There was also a considerable increase in soil erosion in burned soils, especially at a higher burn severity, where the erosion rate increased by more than five times. The empirical predictions are overall consistent with the experimental results and offer reasonable calibration of relevant soil erosion parameters. These findings demonstrate the importance of post-fire erosion in understanding and mitigating the long-term effects of wildfires on geo-environmental systems.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have