Abstract

Oxynitrides have been explored extensively in the past decade because of their interesting properties, such as visible-light absorption, photocatalytic activity and high dielectric permittivity. Their synthesis typically requires high-temperature NH3 treatment (800-1,300 °C) of precursors, such as oxides, but the highly reducing conditions and the low mobility of N(3-) species in the lattice place significant constraints on the composition and structure-and hence the properties-of the resulting oxynitrides. Here we show a topochemical route that enables the preparation of an oxynitride at low temperatures (<500 °C), using a perovskite oxyhydride as a host. The lability of H(-) in BaTiO3-xHx (x ≤ 0.6) allows H(-)/N(3-) exchange to occur, and yields a room-temperature ferroelectric BaTiO3-xN2x/3. This anion exchange is accompanied by a metal-to-insulator crossover via mixed O-H-N intermediates. These findings suggest that this 'labile hydride' strategy can be used to explore various oxynitrides, and perhaps other mixed anionic compounds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.