Abstract

A label-free light-up fluorescent sensing strategy using hybridization chain reaction (HCR) amplification and DNA triplex assembly has been developed. Remarkably, the proposed fluorescence assay is successfully applied to the determination of avian influenza A (H7N9) virus DNA and thrombin. Herein, in the presence of targets, the target DNA/initiator triggers a cascade of hybridization events between H1 and H2 that yields nicked double helices analogous to alternating copolymers. With the additions of triplex-forming oligonucleotide (TFO) and berberine, the triplex structures form between HCR products and TFO. Then, a large amount of berberine can bind to the triplex structures and the sensing system exhibits a dramatic increase in the fluorescence intensity at 530 nm. Under optimal conditions, the label-free fluorescent sensing platform shows sensitive responses to H7N9 virus DNA and thrombin in the range of 0.2–100 nM and 0.5–200 nM, respectively. The detection limits of H7N9 virus DNA and thrombin are as low as 0.14 nM and 0.32 nM, respectively. Owing to the simplicity and low cost, the proposed strategy can be used in other biomarkers assays, providing a promising tool for clinical diagnosis and biomedical detection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call