Abstract

Despite their wide bioapplications, potential health risks of gold nanoparticles (AuNPs) remain unclear. As a determinant of their risks, AuNP accumulation within a cell population is subject to cell-to-cell heterogeneity. Methods to simultaneously quantify and visualize intracellular AuNPs at the single-cell level are, however, lacking. Here we developed a novel label-free technique, based on hyperspectral imaging with enhanced darkfield microscopy (HSI-DFM), to visualize and quantify AuNP accumulation at the single-cell level. The identification ability of the hyperspectral libraries derived from extra- and intracellular AuNPs was compared. The spectral number in the libraries was optimized to maximize their identification ability while minimizing the identification time. In addition, a filtration method was established to merge spectral libraries from different cell lines based on their similarity. The intracellularly accumulated AuNPs as determined by HSI-DFM well correlated with those detected by inductively coupled plasma mass spectrometry. This validation allowed us to calculate the intracellular concentration of AuNPs at the single-cell level and to monitor the accumulation kinetics of AuNPs in living cells. The label-free method developed herein can be applied to other types of AuNPs differing in their physicochemical properties as well as other NPs, as long as they are detectable by HSI-DFM.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.