Abstract
The main function of red blood cells (RBCs) is to circulate oxygen and carbon dioxide throughout the human body. Accurate modeling of the transportation mechanism of RBCs inside microvessels will lead to better clinical diagnosis and prophylaxis of blood disease. This study combined hydrodynamics and basic circuit theory to model the fluid mechanisms of the circulation of blood cells inside capillaries. The variations of physical properties inside the capillaries due to clogging by RBCs were analyzed. A lab-on-a-chip for RBC deformability diagnosis was fabricated using soft lithography. Real experiments were conducted to verify the theoretical analysis and illustrated the capability of the device which was able to observe pathological changes in RBC deformability. The proposed device could be a convenient tool in the field of blood rheology and clinical applications.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have