Abstract

A local measurement technique for the study of the kinetic processes of emerging of grains or blocks of grains from the inner volume to the free surface of superplastic materials during deformation is presented and used for the case of the Cd-Zn eutectic alloy deformed at room temperature. This technique could be used to evaluate the approximate time of fracture due to fissure or cavitation growth in samples under superplastic deformation. In principle, this technique will be useful for the development of physical procedures, which allows retarding the process of formation of low mismatch angle, , between neighboring grains, process which gives place to blocks of grains which dynamically behave as units under the shear stress action. For materials with nanocrystalline structures, such processes are expected to be higher than those of the case of microcrystalline materials.

Highlights

  • Superplasticity is the ability of polycrystalline material to exhibit, in a generally isotropic way, very high tensile elongations prior to failure [1]

  • A model which was validated against experimental observations concerning metals, alloys and ceramics of micrometer and submicrometer grain sizes, nanostructured materials, and intermetallics has been proposed to account for optimal superplasticity; their central assumption is that the rate controlling deformation process on GBS is confined to high-angle grain/interphase boundary regions that are essential for grain-boundary sliding developing to a mesoscopic scale

  • The main purpose of this paper is twofold: (1) to presents a new scanning electron microscopy technique which is applied for the case of the Cd-17.4% Zn alloy to measure the kinetically evolution of the emerging of grains or blocks of grains from the inner volume to the free surface of superplastic material during deformation and (2) to develop a simple thermodynamical model about the time evolution of block size of sliding grains during superplastic deformation in order to give some explanation about our experimental data

Read more

Summary

Introduction

Superplasticity is the ability of polycrystalline material to exhibit, in a generally isotropic way, very high tensile elongations prior to failure [1] Such phenomena occur mainly by grain-boundary sliding (GBS), between individual grains, with size lower than 10 micrometers, which glide relative to each other with little or no change in shape during long plastic deformation [2, 3]. Most of the early studies dealt with microduplex metallic alloys which make the grain growth very difficult, and the unabated scientific interest on superplasticity has from long ago broadened the scope to include intermetallic compounds and nanocrystalline materials [8]. A model which was validated against experimental observations concerning metals, alloys and ceramics of micrometer and submicrometer grain sizes, nanostructured materials, and intermetallics has been proposed to account for optimal superplasticity; their central assumption is that the rate controlling deformation process on GBS is confined to high-angle grain/interphase boundary regions that are essential for grain-boundary sliding developing to a mesoscopic scale

Objectives
Methods
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.