Abstract

Laser flash photolysis technique is used to study human hemoglobin (HbA) oxygenation. Monomolecular geminate oxygenation of triliganded R-state HbA molecules is described by a function of three exponentials. Geminate oxygenation of the alpha-subunit within R-state HbA is characterized by two components with time constants of 0.14 and 1 ns, while geminate oxygenation of the beta-subunit within HbA is characterized by two components with time constants of 1 and approximately 30 ns. Bimolecular oxygenation of triliganded R-state HbA molecules is described by a biexponential law. Two observed rate constants are assigned to oxygenation of the alpha- and beta-subunit within HbA. The bimolecular association rate constants for O(2) rebinding with the alpha- and beta-subunit within triliganded R-state HbA are k(alpha) = 18.8 +/- 1.3 (microM x s)(-1) and k(beta) = 52 +/- 4 (microM x s)(-1), respectively. The apparent quantum yields of photodissociation of the beta- and alpha-subunit within completely oxygenated R-state HbA differ from each other by a factor of 3.6 and are equal to 0.041 +/- 0.004 and 0.0114 +/- 0.0012, respectively. The apparent quantum yield of photodissociation of completely oxygenated R-state HbA is equal to 0.026 +/- 0.003.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call