Abstract

The rapid growth of the demand for optical communication capacity promotes optical fiber communication technology. As a method to break through the capacity limitation of conventional single-mode fiber, multi-core fiber based on space division multiplexing technology has attracted extensive attention. In order to respond to the capacity of traditional single-mode fiber positively, we design a scheme of single-mode multi-core fiber combining the arrangement of heterogeneous fiber cores with secondary structure of low refractive index trench. The scheme consists of nineteen fiber cores arranged in a hexagonal closed-packed structure. Heterogeneous trench-assisted multi-core fiber (Hetero-TA-MCF) has low inter-core crosstalk and excellent anti-bending performance. Compared with conventional single-mode fiber, the Hetero-TA-MCF has the large transmission capacity and average effective area of each core of about 80 μm<sup>2</sup>. The transmission capacity of 19 cores is equivalent to the sum of the transmission capacities of 19 single-core single-mode fibers. We use COMSOL Multiphysics to simulate the fiber structure, finding the parameters that affect the properties of the fiber, selecting parameters and structures for optimal performance. Then we calculate the transmission characteristics by the finite element method,and the results of substantive simulating compute are as follows. The Hetero-TA-MCF achieves a low inter-core crosstalk (XT) of about –39 dB/100 km so that each core can be transmitted as a separate channe. It meets the standard of multi-core fiber long distance transmission. The XT of the heterogeneous 19-core single-mode fiber is suitable for multi-core fiber long distance transmission standards. The bending loss of the outermost fiber core is –7.7×10<sup>–5</sup> dB/m when the bending radius is 10 cm, which reflects the low loss characteristics of the structure. The nonlinear coefficients of three kinds of core are 1.28 W<sup>–1</sup>·km<sup>–1</sup>, 1.31 W<sup>–1</sup>·km<sup>–1</sup>, and 1.30 W<sup>–1</sup>·km<sup>–1</sup> respectively, reducing the nonlinear effect of optical fiber effectively; the dispersions of three kinds of cores are less than 24 ps/(nm·km). In addition, the steady single-mode transmission is achieved in <i>C</i>+<i>L</i> band. Compared with traditional single-mode fiber and single-trench homogeneous fiber, the proposed fiber in this work has low crosstalk, good bending resistance and large mode field area, which is suitable for long distance and large capacity transmission in space division multiplexing system.

Highlights

  • 飞速增长的光通信容量需求推动着光纤技术的发展,基于空分复用 技术的多芯光纤作为突破传统单模光纤容量限制的方法引起了广泛的关 注,本文将纤芯异质结构与低折射率沟槽结合,设计了一种具有低串扰 的十九芯单模光纤结构,该结构由环绕沟槽的三种不同参数的纤芯按正 六边形排布构成,在 C+L 波段能实现稳定单模传输。研究结果表明:在 波长为 1.55μm 时,通过在沟槽中进行掺氟处理,可以使光纤的芯间串扰 降低至-39.52dB/100km。此外在弯曲半径为 100mm 时,弯曲损耗为7.7×10-5dB/m 且色散低于 24ps/(nm·km)。纤芯中基模的有效模场面积约 为 80μm2,有利于降低非线性效应。与传统单模光纤及单沟槽同质结构 光纤相比,该结构具有更低的串扰、更好的抗弯曲性能和更大的模场面 积。本文设计的光纤适用于空分复用系统中远距离大容量的传输。.

  • 本文设计了一种沟槽辅助型十九芯单模异质结构光纤。十九个纤芯呈六角密 排型,由三种参数不同的纤芯构成,每两个相邻纤芯的参数均不同,同时为每个 纤芯增加单层低折射率沟槽,可以有效地降低芯间串扰。通过 COMSOL 软件进 行模拟,采用全矢量有限元方法研究了该光纤的芯间串扰、损耗和色散等性能, 找出影响光纤传输性能的光纤参数并对其进行优化,得到的结果如下:光纤在 1.55μm 的波长下传输 100km 后,三种纤芯之间的串扰分别是:-39.52dB、-33.07dB、 -30.33dB,随着沟槽折射率的降低,三种纤芯之间的串扰可降低至-48.02dB;该 结构光纤具有抗弯曲的性能,当弯曲半径达到 80mm 后,光纤的芯间串扰受弯曲 半径的影响很小,且逐渐接近上述的串扰值;三种纤芯的色散也能控制在

  • 耗、可以长距离传输的十九芯单沟槽异质结构光纤。该光纤只对基模进行传输。 十九个纤芯由三种不同的纤芯组成,每种纤芯都环绕着一个石英包层和一个低折 射率沟槽。十九芯异质结构光纤截面如图 1。红色、绿色、黄色纤芯分别代表纤 芯 1、2、3,r1、r2、r3 分别代表三种纤芯的半径。此外光纤的包层直径 Dcl 为 240μm, 芯间距为 42μm。

Read more

Summary

Introduction

飞速增长的光通信容量需求推动着光纤技术的发展,基于空分复用 技术的多芯光纤作为突破传统单模光纤容量限制的方法引起了广泛的关 注,本文将纤芯异质结构与低折射率沟槽结合,设计了一种具有低串扰 的十九芯单模光纤结构,该结构由环绕沟槽的三种不同参数的纤芯按正 六边形排布构成,在 C+L 波段能实现稳定单模传输。研究结果表明:在 波长为 1.55μm 时,通过在沟槽中进行掺氟处理,可以使光纤的芯间串扰 降低至-39.52dB/100km。此外在弯曲半径为 100mm 时,弯曲损耗为7.7×10-5dB/m 且色散低于 24ps/(nm·km)。纤芯中基模的有效模场面积约 为 80μm2,有利于降低非线性效应。与传统单模光纤及单沟槽同质结构 光纤相比,该结构具有更低的串扰、更好的抗弯曲性能和更大的模场面 积。本文设计的光纤适用于空分复用系统中远距离大容量的传输。. 本文设计了一种沟槽辅助型十九芯单模异质结构光纤。十九个纤芯呈六角密 排型,由三种参数不同的纤芯构成,每两个相邻纤芯的参数均不同,同时为每个 纤芯增加单层低折射率沟槽,可以有效地降低芯间串扰。通过 COMSOL 软件进 行模拟,采用全矢量有限元方法研究了该光纤的芯间串扰、损耗和色散等性能, 找出影响光纤传输性能的光纤参数并对其进行优化,得到的结果如下:光纤在 1.55μm 的波长下传输 100km 后,三种纤芯之间的串扰分别是:-39.52dB、-33.07dB、 -30.33dB,随着沟槽折射率的降低,三种纤芯之间的串扰可降低至-48.02dB;该 结构光纤具有抗弯曲的性能,当弯曲半径达到 80mm 后,光纤的芯间串扰受弯曲 半径的影响很小,且逐渐接近上述的串扰值;三种纤芯的色散也能控制在 耗、可以长距离传输的十九芯单沟槽异质结构光纤。该光纤只对基模进行传输。 十九个纤芯由三种不同的纤芯组成,每种纤芯都环绕着一个石英包层和一个低折 射率沟槽。十九芯异质结构光纤截面如图 1。红色、绿色、黄色纤芯分别代表纤 芯 1、2、3,r1、r2、r3 分别代表三种纤芯的半径。此外光纤的包层直径 Dcl 为 240μm, 芯间距为 42μm。 Schematic structure of heterogeneous trench-assisted 19-core fiber.

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call