Abstract
Modern home energy management systems (HEMSs) have great flexibility of energy consumption for customers, but at the same time, bear a range of problems, such as the high system complexity, uncertainty and time-varying nature of load consumptions, and renewable sources generation. This has brought great challenges for the real-time control. To solve these problems, we propose an HEMS that integrates a kernel-based real-time adaptive dynamic programming (K-RT-ADP) with a new preprocessing short-term prediction technique. For the preprocessing short-term prediction, we propose a gated recurrent unit-bidirectional encoder representations from the transformer (GRU-BERT) model to improve the forecasting accuracy of electrical loads and renewable energy generation. In particular, we classify household appliances into the temperature-sensitive loads, human activity sensitive loads, and insensitive/constant loads. The GRU-BERT model can incorporate weather and human activity information to predict load consumption and solar generation. For real-time control, we propose and employ the K-RT-ADP HEMS based on the GRU-BERT prediction algorithm. The objective of the K-RT-ADP HEMS is to minimize the electricity cost and maximize the solar energy utilization. To enhance the nonlinear approximation ability and generalization ability of the adaptive dynamic programming (ADP) algorithm, the K-RT-ADP algorithm leverages kernel mapping instead of neural networks. Hardware-in-the-loop experiments demonstrate the superiority of the proposed K-RT-ADP HEMS over the traditional ADP control through comparison.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.