Abstract

Hydrogen was inserted into 2024 aluminum alloy by cathodic polarization in sulfuric acid at 25 °C. Scanning Kelvin Probe Force Microscopy (SKPFM) measurements performed perpendicularly to the charging side revealed a potential gradient and confirmed the insertion of hydrogen over hundreds of microns. A hydrogen diffusion coefficient of 1.7 × 10−9 cm2 s−1 was calculated from SKPFM measurements of H-charged samples for different durations. The evolution of the potential gradient during desorption of hydrogen in air, at room temperature and at 130 °C was investigated. Additional experiments performed at a corrosion defect showed that SKPFM could detect both reversibly and irreversibly bounded hydrogen. These results show that SKPFM is a cutting-edge technique for hydrogen detection and localization at a local scale.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call