Abstract
The detailed analysis of the 1H NMR hyperfine shifts according to the model-free methods shows that the semi-rigid monometallic complexes [Ln(L)(NO3)3] (Ln = Eu-Yb) are isostructural in solution. The associated separation of contact and pseudo-contact contributions to the hyperfine NMR shifts in each rhombic lanthanide complex at room temperature provides paramagnetic susceptibility tensors whose principal magnetic axes match the expected symmetry requirements. Moreover, both axial (Delta chi(ax)) and rhombic (Delta chi(rh)) paramagnetic anisotropies display satisfactory linear dependence on Bleaney's factors, a correlation predicted by the approximate high-temperature expansion of the magnetic susceptibility limited to T(-2). Consequently, the simple, and chemically attracting NMR model-free methods are not limited to axial systems, and can be safely used for the investigation of the solution structures of any lanthanide complexes. Molecular-based structural criteria for the reliable estimation of paramagnetic susceptibility tensors by NMR are discussed, together with the assignment of the labels of the crystal-field and magnetic axes within Bleaney's approach.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have