Abstract

In this paper, we investigate the secondary structure of the Piv-Pro-d-Ser-NHMe peptide by means of nuclear magnetic resonance (NMR) and electronic circular dichroism (ECD) experiments, in conjunction with theoretical simulations based on molecular dynamics and time-dependent density functional theory calculations including polarizable embedding to account for solvent effects. The various experimental and theoretical protocols are assessed and validated, and are shown to provide a consistent description of the turn structure adopted by this peptide in solution. In addition, a simple fitting procedure is proposed to make the simulated and experimental ECD almost perfectly match. This full methodology is finally tested on another small peptide, enlightening its efficiency and robustness.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call