Abstract
In the present work, the validity of the helicity rule relating the absolute configuration of the bridgehead carbon atom in bicyclic β-lactams to the sign of the 220 nm band observed in their electronic circular dichroism (ECD) spectra is examined for ring-expanded cephalosporin analogues. To this end, a series of model compounds with a seven-membered ring condensed with the β-lactam unit was synthesized. A key step of their synthesis was either the ring-closing metathesis (RCM) or the free radical cyclization leading to the seven-membered ring with an S, O, or C atom at the 6 position in the bicyclic skeleton. To investigate the scope and limitations of the simple, empirically established helicity rule, a combination of ECD spectroscopy, variable-temperature ECD measurements, X-ray analysis, and time-dependent density functional theory (TD-DFT) calculations was used. A comparison of the experimental ECD spectra with the spectra simulated by TD-DFT calculations gives a reasonable interpretation of the Cotton effects observed in the 240-215 nm spectral range. The results suggest that the helicity rule does not apply to the investigated compounds because of the planarity of their amide chromophore. Thus, these compounds do not constitute an exception to the rule that was established for bi- and polycyclic β-lactams with the nonplanar amide chromophore only.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.