Abstract

In this paper, we derive a closed-form expression for the combiner of a multiple-input-multiple-output (MIMO) receiver equipped with a minimum-mean-square-error (MMSE) estimator. We propose using variable-bit-resolution analog-to-digital converters (ADC) across radio frequency (RF) paths. The combiner designed is a function of the quantization errors across each RF path. Using very low bit resolution ADCs (1–2bits) is a popular approach with massive MIMO receiver architectures to mitigate large power demands. We show that for certain channel conditions, adopting unequal bit resolution ADCs (e.g., between 1 and 4 bits) on different RF chains, along with the proposed combiner, improves the performance of the MIMO receiver in the Mean Squared Error (MSE) sense. The variable-bit-resolution ADCs is still within the power constraint of using equal bit resolution ADCs on all paths (e.g., 2-bits). We propose a genetic algorithm in conjunction with the derived combiner to arrive at an optimal ADC bit allocation framework with significant reduction in computational complexity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call