Abstract
This article describes the implementation of a multiple-input multiple-output acoustic communication link in shallow water conditions to enable a software-defined acoustic modem with a maximum transmission rate of 20 kbps in a 5-kHz bandwidth. The reliability improvement of a low-complexity Alamouti space–time block code is evaluated to improve the diversity in a high-rate transmission mode using single carrier modulation, as well as in a low-rate transmission mode relying on continuous-phase frequency-shift keying. Using measurements in realistic subsea conditions, the effect of the spatial channel correlation is demonstrated. It is found that for the space–time block code/continuous-phase frequency-shift keying, the spatial diversity is significantly degraded due to the high spatial correlation. In contrast, for the high-mode transmission rate, space–time block code with single carrier modulation offers a bit error rate improvement by a factor over hundred, in comparison to a single transmit element, demonstrating that the multiple-input multiple-output optimal code depends on the software-defined acoustic modem transmission mode.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Distributed Sensor Networks
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.