Abstract

ABSTRACT When dealing with the mutual storage relationship of behavioral features in long time sequence video, the convolutional neural network is easy to miss important feature information. To solve the above problems, this paper proposes a super automatic algorithm combining nonlocal convolution and three-dimensional convolution neural network. The algorithm uses sparse sampling to segment the long time sequence video to reduce the amount of redundant information, and integrates non-local convolution into the residual neural network, thus forming a super automatic full variational - L1 algorithm. Experimental results show that the proposed method can significantly improve the efficiency of behavior recognition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.