Abstract

Rubber has been widely addressed as anti-vibration components in long time service structure, time-dependent behavior is an undesirable problem contributing to the low acceptance by applications. In this paper, a hyper-viscoelastic model is established so that the tension behavior of rubber is simulated and analyzed. This model is constructed by a hyperelastic element in parallel with a viscoelastic model and Polynomial model, which was examined by uniaxial tension test, was proved validly to be hyperelastic. A fairly good agreement between the tension creep test and analytical results claimed that the Generalized Maxwell model with six variables is suitable for expression of hyper-viscoelastic method. In this paper, by combining the results of uniaxial tensile and tensile creep experiments, a hyper-viscoelastic constitutive model is established, and the experiment is simulated compared with the experimental results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call