Abstract

Study regionCombined Sewer Overflows (CSO) of 671 Functional Urban Areas (FUAs) throughout the European Union + UK (EU28), representing almost half of the EU28 population. Study focusCSO loads can be quantified at the local scale through measurements, or with calibrated hydrological models. However, they are difficult to quantify at a large scale (e.g. regional or national), due to a lack of data, and the models used at local scale cannot be applied in the absence of knowledge of the combined sewer (CS) network. This paper presents a 6-parameter lumped hydrological model to simulate a CS network and its overflows, using population and rainfall data of 671 EU28 FUAs. New hydrological insights for the regionWhen properly calibrated, the model can predict the CSO hydrographs as well as aggregated CSO descriptors of a catchment with known impervious surface area connected to a CS with a reasonable reliability. When model calibration is not possible, using default values of the parameters enables a first approximation estimate of CSOs, accurate within one order of magnitude, which can be used to support scenario analysis for regional and continental CSO management. At the EU28 scale, the estimated total CSO volume is 5.7·103 Mm3/y, with a dry weather flow content in CSOs of 460 Mm3/y (assuming a dry weather flow of 200 l/population equivalent (PE)/day including sanitary discharges, industrial discharge and infiltration). A collection of case studies on CSOs is also provided.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call