Abstract
With the rapid development of IoT, big data and artificial intelligence, the research and application of data-driven hydrological models are increasing. However, when conducting time series analysis, many prediction models are often directly based on the following assumptions: hydrologic time series are normal, homogeneous, smooth and non-trending, which are not always all true. To address the related issues, a solution for short-term hydrological forecasting is proposed. Firstly, a feature test is conducted to verify whether the hydrological time series are normal, homogeneous, smooth and non-trending; secondly, a sequence-to-sequence (seq2seq)-based short-term water level prediction model (LSTM-seq2seq) is proposed to improve the accuracy of hydrological prediction. The model uses a long short-term memory neural network (LSTM) as an encoding layer to encode the historical flow sequence into a context vector, and another LSTM as a decoding layer to decode the context vector in order to predict the target runoff, by superimposing on the attention mechanism, aiming at improving the prediction accuracy. Using the experimental data regarding the water level of the Chu River, the model is compared to other models based on the analysis of normality, smoothness, homogeneity and trending of different water level data. The results show that the prediction accuracy of the proposed model is greater than that of the data set without these characteristics for the data set with normality, smoothness, homogeneity and trend. Flow data at Runcheng, Wuzhi, Baima Temple, Longmen Town, Dongwan, Lu’s and Tongguan are used as input data sets to train and evaluate the model. Metrics RMSE and NSE are used to evaluate the prediction accuracy and convergence speed of the model. The results show that the prediction accuracy of LSTM-seq2seq and LSTM-BP models is higher than other models. Furthermore, the convergence process of the LSTM-seq2seq model is the fastest among the compared models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.