Abstract

Drawing intuition from a (physical) hydraulic system, we present a novel framework, constructively showing the existence of a strong Nash equilibrium in resource selection games (i.e., asymmetric singleton congestion games) with nonatomic players, the coincidence of strong equilibria and Nash equilibria in such games, and the uniqueness of the cost of each given resource across all Nash equilibria. Our proofs allow for explicit calculation of Nash equilibrium and for explicit and direct calculation of the resulting (unique) costs of resources, and do not hinge on any fixed-point theorem, on the Minimax theorem or any equivalent result, on linear programming, or on the existence of a potential (though our analysis does provide powerful insights into the potential, via a natural concrete physical interpretation). A generalization of resource selection games, called resource selection games with I.D.-dependent weighting, is defined, and the results are extended to this family, showing the existence of strong equilibria, and showing that while resource costs are no longer unique across Nash equilibria in games of this family, they are nonetheless unique across all strong Nash equilibria, drawing a novel fundamental connection between group deviation and I.D.-congestion. A natural application of the resulting machinery to a large class of constraint-satisfaction problems is also described.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call