Abstract

Ultra-thin targets (less than 10 nm), such as graphene, can be irradiated with relativistic intensity lasers to generate energetic ions. However, the laser prepulse can prematurely destroy these targets and significantly influence the final ion energies. Due to the limitations of the conventional hydrodynamic model, simulating the interaction between ultra-thin targets and a prepulse is infeasible. To overcome this issue, we propose a hybrid simulation technique in this study. This technique involves simulating the target-prepulse interaction using molecular dynamics (MD) simulation, which is then combined with the particle-in-cell simulation for the target-main pulse interaction, in order to accurately model the entire laser-target interaction dynamics. A realistic, experimentally measured laser intensity profile for the prepulse is used for the MD simulation, and the particle energies from this hybrid simulation are found to be in good agreement with the experiment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.