Abstract

A low-voltage, low-power microvalve for compact battery-powered portable microfluidic platforms is designed, fabricated and experimentally characterized. The microvalve employs laser-machined piezoelectric unimorphs mechanically linked to surface micromachined nickel structures anchored on corrugated Si/sub x/N/sub y/-Parylene composite membrane tethers. The Parylene layer also serves as a compliant sealing layer on the valve seat for reducing the leakage in the off state. A mechanical linking process to connect the bulk piezoelectric unimorphs to micromachined diaphragms in a self-aligned manner has been developed. The design enables large strokes (2.45 /spl mu/m) at low-actuation voltages (10 V) consuming a comparatively low switching energy (678 nJ). The dependence of the measured flow rates on the modulated clearance over the orifice was found to be in good agreement with the theory of laminar flow in the low (1-100) Reynolds number regime. The microvalve was experimentally characterized for both gas and liquid flows. For example, at 10 V unimorph actuation, a gas flow rate of 420 /spl mu/L/min at a differential pressure of 9.66 kPa was measured. The off-state leakage rate for 0 V actuation is estimated to be 10-20 /spl mu/L/min. Typical flow rates with pulse width modulated (PWM) actuation with 50% duty cycle at 20 V/sub pp/ (1 kHz) were measured to be 770 /spl mu/L/min at 6.9 kPa for gases and 2.77 /spl mu/L/min at 4.71 kPa for liquids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.