Abstract

In this paper, a time series forecasting approach by integrating particle swarm optimization (PSO) and support vector regression (SVR) is proposed. SVR has been widely applied in time series predictions. However, no general guidelines are available to choose the free parameters of an SVR model. The proposed approach uses PSO to search the optimal parameters for model selections in the hope of improving the performance of SVR. In order to evaluate the performance of the proposed approach, the TAIEX (Taiwan Stock Exchange Capitalization Weighted Stock Index) closing cash index is used as the illustrative example. Experimental results show that the proposed model outperforms the traditional SVR model and provides an alternative in financial time series forecasting.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.