Abstract

A hybrid numerical scheme designed for hypersonic non-equilibrium flows is presented which solves the Navier–Stokes equations in regions of near-equilibrium and uses the direct simulation Monte Carlo method where the flow is in non-equilibrium. Detailed analysis of each stage of the hybrid cycle illustrates the difficulty in defining physically correct DSMC boundary conditions in regards to both macroscopic state and velocity distribution. However, results also show that DSMC boundary conditions have little effect on a previously initialized interior particle domain. A sub-relaxation technique capable of determining macroscopic, hydrodynamic properties in a DSMC simulation is used to determine low-scatter boundary conditions for the NS domain. Particle and continuum domains adapt during the hybrid simulation through application of a continuum breakdown parameter based on the gradient-length Knudsen number. The hybrid code reproduces experimental results and full DSMC simulations in half the time for a large range of 1D shock waves in argon and diatomic nitrogen gas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call