Abstract
Objectives:In this study, our goal is to enhance consensus efficiency in complex decision-making scenarios by constructing a large-scale group decision-making (LSGDM) method that integrates dynamic social network (DSN) and opinion dynamics. To this end, we design a model that can effectively cluster experts and dynamically adjust the network structure to more accurately reflect the diversity and complexity of the actual decision-making process. Methods:Specifically, we first design an improved Louvain algorithm based on social influence to effectively cluster participants with similar opinions into the same community. Then, we utilize structural hole theory to distinguish opinion leaders and followers in the community, and construct a DSN updating mechanism based on opinion disagreement and trust relationship. Finally, we combine the advantages of the DeGroot and Hegselmann–Krause (HK) models and propose a hybrid opinion dynamics (HOD) model in the LSGDM framework, referred to as DSN-HOD-LSGDM. Findings:Experimental results demonstrate that the DSN-HOD-LSGDM model significantly enhances consensus-building efficiency across diverse decision-making communities. The model effectively tracks opinion evolution in complex networks, outperforming conventional methods in both adaptability and scalability. Novelty:In this study, we propose an improved Louvain algorithm and dynamic weight allocation mechanism based on influence index, and design a personalized opinion evolution mechanism combined with structural hole theory. By fusing opinion evolution and dynamic trust, we construct a new LSGDM consensus model that realizes the dynamic adjustment of the trust relationship between individuals.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have