Abstract

In this paper, a hybrid multi-objective scheme is proposed to complete simultaneously four objectives, i.e., the specified primary task for the end-effector, obstacle avoidance, joint-physical limits avoidance, and repetitive motion of redundant robot manipulators. In addition, corresponding theoretical analysis is given, which guarantees the validity of the proposed scheme. Then, the proposed hybrid multi-objective scheme is reformulated as a dynamical quadratic program (DQP) problem. The optimal solution of the DQP problem is found by the PLPE (piecewise-linear projection equation) neural network, i.e., PLPENN, and also by the corresponding numerical algorithm implemented on the computer. Furthermore, simulation and comparison based on a six-link planar redundant robot manipulator substantiate the effectiveness and accuracy of the proposed scheme. At last, a hardware experiment is conducted on a six-link physical robot manipulator system, which substantiates the physical realizability, operational stability, and safety of the proposed hybrid multi-objective scheme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.