Abstract
By conserving natural resources and reducing the consumption of fossil fuels, sustainable energy development plays a crucial role in energy planning. Specifically, demand-side planning must be researched and anticipated based on electricity consumption at the grounded level. Due to the global warming crisis, atmospheric conditions are among the most influential components that have altered electricity consumption patterns. In this study, 66 climate variables from the ERA5 reanalysis and the observed power demand at four grid substations (GSs) in Cambodia were examined using recurrent neural networks (RNNs). Using the cross-correlation function between power demand and each climate variable, statistically significant climate variables were sorted out. In addition, a wide range of feedback delays (FDs) was generated from the data on power demand and defined using 95% confidence intervals. The combination of the improved complete ensemble empirical mode decomposition with adaptive noise (ICEEMDAN) technique with a nonlinear autoregressive neural network with exogenous inputs (NARX) and a nonlinear autoregressive neural network (NAR) produced a hybrid electricity forecasting model. The data were decomposed into the intrinsic mode functions (IMFs) and were then used as inputs in optimized NARX and NAR models. The performance of the various benchmarked models was analyzed and compared using mainly statistical indicators such as the normalized root mean square error (NMSE) and the coefficient of determination (R2). The hybrid models perform exceptionally well in predicting electricity demand, and the ICEEMDAN-NARX hybrid model with correlated climate variables performs the best among the tested experiments as a useful prediction tool.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.