Abstract

We are interested in solving the inverse problem of acoustic wave scattering to reconstruct the position and the shape of sound-hard obstacles from a given incident field and the corresponding far field pattern of the scattered field. The method we suggest is an extension of the hybrid method for the reconstruction of sound-soft cracks as presented in [R. Kress, P. Serranho, A hybrid method for two-dimensional crack reconstruction, Inverse Problems 21 (2005) 773–784] to the case of sound-hard obstacles. The designation of the method is justified by the fact that it can be interpreted as a hybrid between a regularized Newton method applied to a nonlinear operator equation with the operator that maps the unknown boundary onto the solution of the direct scattering problem and a decomposition method in the spirit of the potential method as described in [A. Kirsch, R. Kress, On an integral equation of the first kind in inverse acoustic scattering, in: Cannon, Hornung (Eds.), Inverse Problems, ISNM, vol. 77, 1986, pp. 93–102. Since the method does not require a forward solver for each Newton step its computational costs are reduced. By some numerical examples we illustrate the feasibility of the method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.