Abstract
We consider the inverse problem of time-harmonic acoustic wave scattering where the shape of an obstacle is reconstructed from a given incident field and the modulus of the far field pattern of the scattered field. Our approach is based on a pair of nonlinear and ill-posed integral equations to be solved for the shape of the unknown boundary. This approach is an extension of the method suggested by Kress and Rundell [5] for an inverse boundary value problem for the Laplace equation. Since the modulus of far field pattern is invariant under translations [4] we can reconstruct the shape of the obstacle but not the location.  The numerical implementation of the method is described and it is illustrated by numerical examples that the method yields satisfactory reconstructions both for sound-soft and sound-hard obstacles, also in the case when the modulus is given in a limited aperture.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.