Abstract

The capacitated arc routing problem (CARP) is a difficult combinatorial optimization problem that has been intensively studied in the last decades. We present a hybrid metaheuristic approach (HMA) to solve this problem which incorporates an effective local refinement procedure, coupling a randomized tabu thresholding procedure with an infeasible descent procedure, into the memetic framework. Other distinguishing features of HMA include a specially designed route-based crossover operator for solution recombination and a distance-and-quality based replacement criterion for pool updating. Extensive experimental studies show that HMA is highly scalable and is able to quickly identify either the best known results or improved best known results for almost all currently available CARP benchmark instances. In particular, it discovers an improved best known result for 15 benchmark instances (6 classical instances and 9 large-sized instances whose optima are unknown). Furthermore, we analyze some key elements and properties of the HMA-CARP algorithm to better understand its behavior.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.