Abstract

A language model based on features extracted from a recurrent neural network language model and semantic embedding of the left context of the current word based on probabilistic semantic analysis (PLSA) is developed. To calculate such embedding, the context is considered as a document. The effect of vanishing gradients in a recurrent neural network is reduced by this method. The experiment has shown that adding topic-based features reduces perplexity by 10%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.