Abstract
Recurrent neural network language models (RNNLMs) have become an increasingly popular choice for speech and language processing tasks including automatic speech recognition (ASR). As the generalization patterns of RNNLMs and n-gram LMs are inherently different, RNNLMs are usually combined with n-gram LMs via a fixed weighting based linear interpolation in state-of-the-art ASR systems. However, previous work doesn't fully exploit the difference of modelling power of the RNNLMs and n-gram LMs as n-gram level changes. In order to fully exploit the detailed n-gram level complementary attributes between the two LMs, a back-off based compact representation of n-gram dependent interpolation weights is proposed in this paper. This approach allows weight parameters to be robustly estimated on limited data. Experimental results are reported on the three tasks with varying amounts of training data. Small and consistent improvements in both perplexity and WER were obtained using the proposed interpolation approach over the baseline fixed weighting based linear interpolation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.